logo

Velkommen til GPU-beregning!

Praksis med at beregne hashes på grafikkort, også kendt som GPU (Graphics Processing Unit) hashing eller GPU-mining, blev populær med fremkomsten af kryptovalutaer, især Bitcoin. Bitcoin-mining involverer løsning af komplekse matematiske problemer for at validere transaktioner og sikre netværket. I starten blev Bitcoin-mining udført på central processing units (CPU'er), men da sværhedsgraden af mining steg, blev CPU'er ineffektive og erstattet af GPU'er.

Folk begyndte at beregne hashes på grafikkort omkring 2010 for at mine kryptovalutaer som Bitcoin mere effektivt. Grafikkort, eller GPU'er, er højt parallelle processorer, der kan udføre mange beregninger samtidig, hvilket gør dem ideelle til den beregningstunge natur af mining. Brugen af GPU'er gjorde det muligt for minearbejdere at behandle flere hash-beregninger pr. sekund, hvilket øgede deres chancer for at tjene mining-belønninger.

Anvendelsen af GPU'er strækker sig ud over deres parallelle behandlingskapaciteter. Disse robuste databehandlingsenheder besidder en karakteristisk kombination af egenskaber, der gør dem yderst dygtige til at udføre specifikke opgaver mere effektivt end CPU'er:

  • Parallelisme: CPU'er, begrænset i deres kerner, engagerer sig i multitasking. I modsætning hertil koordinerer GPU'er, med deres mange agile kerner, en stor symfoni af parallel behandling, hvilket muliggør samtidig udførelse af et bredt udvalg af opgaver med finesse.

  • Specialisering: GPU'er er arkitektonisk optimeret til specifikke opgaver, med nogle modeller, der indeholder specialiserede komponenter som tensor kerner til maskinlæring eller ray-tracing enheder til realistisk rendering. Disse specialbyggede designs tilbyder bemærkelsesværdige ydelsesfordele i forhold til generelle CPU'er.

  • Load Balancing: Ved at flytte beregningsintensive opgaver til GPU'er kan CPU'er fokusere på deres styrker, såsom at håndtere systemprocesser og brugerinput. Denne harmoniske arbejdsdeling resulterer i et mere responsivt og effektivt samlet system.

  • Energieffektivitet: GPU'er excellerer i opgaver, der er egnede til deres design og opnår et højere antal beregninger pr. watt strøm sammenlignet med CPU'er. Denne energieffektivitet er særligt værdifuld i miljøer som store datacentre eller højtydende databehandlingsfaciliteter, hvor energiforbrug er en fremtrædende bekymring.

  • Datahåndtering: Med forbedret hukommelsesbåndbredde håndterer GPU'er dygtigt større datasæt, hvilket giver en fordel i opgaver som billedbehandling, simuleringer og omfattende dataanalyse.

  • Data Lokalitet: GPU'er har dedikeret hukommelse (VRAM), der fremmer forbedret data lokalitet og reduceret latenstid. Denne dedikerede hukommelse forbedrer ydeevnen i specifikke beregninger.

  • Softwarebiblioteker: Udviklere kan udnytte optimerede softwarebiblioteker og -rammer som CUDA til generel GPU-beregning, cuDNN til dyb læring og OpenCL til heterogen databehandling, hvilket muliggør problemfri udnyttelse af GPU-kraft.

  • Heterogen databehandling: Flytning af opgaver til GPU'er muliggør en problemfri integration af CPU- og GPU-kapaciteter, hvilket resulterer i mere effektive og højtydende systemer.

  • Skalérbarhed: For opgaver, der opnår betydelige ydelsesgevinster fra GPU'er, såsom maskinlæring eller simuleringer, kan udvidelse af GPU-kapaciteter være mere omkostningseffektivt og skalérbart end at øge antallet af CPU-kerner.


Forberedelse af miljøet

Trin 1: Installer Visual Studio

  1. Hvis du ikke allerede har gjort det, så download og installer Visual Studio fra den officielle Visual Studio hjemmeside (https://visualstudio.microsoft.com/).

  2. Sørg for at installere arbejdsbyrden "Desktop development with C++" under Visual Studio-installationen, da CUDA-udvikling kræver C++ udviklingsværktøjer.

Trin 2: Installer CUDA Toolkit

  1. Gå til NVIDIAs CUDA-hjemmeside (https://developer.nvidia.com/cuda-toolkit) og download den seneste version af CUDA Toolkit, der er kompatibel med dit GPU og operativsystem.

  2. Kør CUDA Toolkit-installationsprogrammet og følg instruktionerne på skærmen for at installere CUDA Toolkit på dit system.

Trin 3: Konfigurer Visual Studio til CUDA

  1. Åbn Visual Studio og gå til "Extensions" > "Manage Extensions".

  2. Søg efter "CUDA" i dialogboksen "Extensions and Updates" og installer "NVIDIA CUDA Toolkit"-udvidelsen.

  3. Genstart Visual Studio efter installationen af udvidelsen.

  4. Efter genstarten, gå til "CUDA" > "NVIDIA Nsight" > "Options" i Visual Studio-menuen for at åbne "NVIDIA Nsight" indstillings siden.

  5. På fanen "CUDA", angiv stien til installationsmappen for CUDA Toolkit, som du installerede i Trin 2.

  6. Klik på "OK" for at gemme indstillingerne.

Trin 4: Opret et CUDA-projekt

  • I Visual Studio, gå til "File" > "New" > "Project" for at oprette et nyt projekt.

  • Vælg "CUDA" under "Installed" > "Templates" > "Visual C++" > "NVIDIA" i dialogboksen "New Project".

  • Vælg en CUDA-projektskabelon, såsom "CUDA Runtime Project" eller "CUDA Driver Project", og klik på "Next".

  • Angiv projektnavn, placering og andre indstillinger efter ønske, og klik på "Create" for at oprette CUDA-projektet.

Trin 5: Skriv og kør CUDA-kode

  1. I CUDA-projektet kan du skrive CUDA-kode i ".cu" kildefilerne, som kan kompileres og eksekveres på GPU'en.

  2. For at bygge og køre CUDA-projektet, vælg den ønskede konfiguration (f.eks. "Debug" eller "Release") og klik på knappen "Local Windows Debugger" i Visual Studio-værktøjslinjen.

  3. Visual Studio vil bygge og køre CUDA-projektet, og du kan se outputtet og debugge CUDA-koden ved hjælp af Visual Studio-debuggeren.

Trin 6. Opsæt CUDA-debuggeren

  • Åbn Visual Studio: Start Visual Studio på dit system.

  • Opret et nyt CUDA-projekt eller åben et eksisterende: Enten opret et nyt projekt ved at vælge "File" -> "New" -> "Project" -> "CUDA" i Visual Studio eller åben et eksisterende CUDA-projekt.

  • Sæt projektets egenskaber: Højreklik på dit CUDA-projekt i Solution Explorer og vælg "Properties" fra kontekstmenuen.

  • Vælg Debug-konfigurationen: I vinduet med projektegenskaber, naviger til sektionen "Configuration Properties" og vælg "Debug"-konfigurationen.

  • Konfigurer CUDA Debugger-indstillinger:

    • Sørg for at "CUDA Debugger"-fanen er valgt i venstre rude.

    • I dropdown-menuen "Debugger Type" vælg "NVIDIA CUDA Debugger".

    • Verificer at "Debugger Path" peger på den korrekte placering af CUDA debuggerens eksekverbare fil (f.eks. "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\extras\Visual Studio Integration\cuda_debugger.exe"). Juster stien om nødvendigt, baseret på din CUDA Toolkit installationsmappe og version.

  • Sæt breakpoints og start debugging: Placer breakpoints i din CUDA-kode, hvor du ønsker, at debuggeren skal stoppe. Tryk derefter på F5 eller vælg "Debug" -> "Start Debugging" for at lancere CUDA-debuggeren og begynde at debugge dit CUDA-projekt.

  • Debuggingproces:

    • Debuggeren vil stoppe ved de breakpoints, du har sat i din CUDA-kode, hvilket giver dig mulighed for at inspicere variabler, træde igennem koden og analysere programmets opførsel.

    • Du kan bruge de forskellige debuggingfunktioner, som Visual Studio tilbyder, såsom at træde over linjer, træde ind i funktioner, inspicere variabler og se kaldstakke.

Bemærk: Sørg for, at du har installeret den passende version af CUDA Toolkit, og at dit GPU understøtter debugging. Sørg også for, at du har de nødvendige CUDA-projektindstillinger og -konfigurationer korrekt konfigureret til debugging.

 

Opvarmning: GPU-baseret parallel CRC32

/*
* FUNCTION: __device__ __host__ uint32_t crc32
*
* ARGS:
* const uint8_t* buffer - Input buffer containing data for CRC32 calculation.
* int size - Size of the input buffer.
*
* DESCRIPTION:
* This function calculates the CRC32 checksum for a given input buffer on both CPU and GPU
* devices.
* The CRC32 calculation algorithm used is the standard CRC32 polynomial with initial value of
* 0xFFFFFFFF and final XOR of 0xFFFFFFFF.
* The function iterates through each byte in the input buffer using a for loop, performing bitwise XOR
* and shift operations to calculate the CRC32 value.
* The calculated CRC32 value is then bitwise negated (~crc) and returned as the final result.
*
* RETURN VALUE:
* uint32_t - The calculated CRC32 checksum for the input buffer.
* This function returns a 32-bit unsigned integer representing the CRC32 checksum value.
*/
__device__ __host__ uint32_t crc32(const uint8_t* buffer, int size)
{
   	uint32_t crc = 0xFFFFFFFF;
    	for (int i = 0; i < size; ++i)
    	{
        	crc ^= buffer[i];
        		for (int j = 0; j < 8; ++j)
            		crc = (crc >> 1) ^ (0xEDB88320 & (-(crc & 1)));
    	}
    	return ~crc;
}

/*
* FUNCTION: __global__ void crc32Kernel
*
* ARGS:
* In uint8_t* buffers - Input buffer containing data for CRC32 calculation.
* Out uint32_t* crcResults - Output buffer to store CRC32 results.
* int numBuffers - Number of input buffers.
* int bufferSize - Size of each input buffer.
*
* DESCRIPTION:
* This is a CUDA kernel function for calculating CRC32 checksums in parallel on a GPU device.
* Each thread in the GPU grid corresponds to a unique thread identifier (tid) calculated from blockIdx.x and blockDim.x.
* The bufferIndex is calculated based on tid and bufferSize to determine the starting index of the current buffer to be processed.
* The function performs CRC32 calculation on each buffer by iterating through each byte in the buffer using a for loop.
* The calculated CRC32 value is then saved to the crcResults array at the corresponding tid index.
*
* RETURN VALUE: void
* This function does not return a value.
*/
__global__ void crc32Kernel(_In_ const uint8_t* buffers, _Out_ uint32_t* crcResults, int numBuffers, int bufferSize)
{
    	/* Calculate unique thread identifier */
    	int tid = blockIdx.x * blockDim.x + threadIdx.x;
    	/* Calculate index of the current buffer */
    	int bufferIndex = tid * bufferSize;

    	/* Check if buffer index is within valid range */
    	if (bufferIndex < numBuffers * bufferSize)
        	/* Call crc32 function to calculate CRC32 for the current buffer */
        	crcResults[tid] = crc32(buffers + bufferIndex, bufferSize);
}

/*
* FUNCTION: std::vector< uint32_t > testCRC32CPU
*
* ARGS:
* std::vector< std::vector< uint8_t >> const& buffers - A vector of input buffers to calculate CRC32 checksums.
*
* DESCRIPTION:
* This function calculates the CRC32 checksum for buffers of random data on the GPU using CUDA.
* It dynamically аllocates memory on the device (GPU) for the buffers and CRC32 results.
* The function launches a CUDA kernel on the device to calculate the CRC32 checksum for each buffer in parallel.
* It then copies the results back from the device to the host and frees the allocated memory.
*
* RETURN VALUE: std::vector
* CRC32 checksums for each buffer in the input vector on the GPU.
*/

std::vector< uint32_t > testCRC32GPU(std::vector< std::vector< uint8_t >> const& buffers)
{
    	const int numBuffers = buffers.size();
    	const int bufferSize = buffers[0].size();

    	/* Dynamic memory allocation on the device */
    	unsigned char* d_buffers;
    	uint32_t* d_crcResults;
    	cudaMalloc(reinterpret_cast< void** >(&d_buffers), numBuffers * bufferSize * sizeof(unsigned char));
    	cudaMalloc(reinterpret_cast< void** >(&d_crcResults), numBuffers * sizeof(uint32_t));

    	/* Copy data from host to device using cudaMemcpy2D */
    	for (int i = 0; i < numBuffers; ++i)
        	cudaMemcpy(d_buffers + i * bufferSize, buffers[i].data(), bufferSize * sizeof(unsigned char), cudaMemcpyHostToDevice);

    	/* Calculate number of blocks and threads per block for the kernel launch */
    	const int blockSize = 256;
    	const int numBlocks = (numBuffers + blockSize - 1) / blockSize;

    	/* Launch the kernel on the device indicating the number of blocks(numBlocks) and block size(blockSize) that will be used for parallel execution of calculations on the GPU. */
    	crc32::crc32Kernel << < numBlocks, blockSize >> > (d_buffers, d_crcResults, numBuffers, bufferSize);

    	/* Copy results from device to host directly into a vector without intermediate buffer */
    	std::vector< uint32_t > checksums(numBuffers);
    	cudaMemcpy(checksums.data(), d_crcResults, numBuffers * sizeof(uint32_t), cudaMemcpyDeviceToHost);

    	/* Free device memory */
    	cudaFree(d_buffers);
    	cudaFree(d_crcResults);
    	/* Return the CRC32 checksums as a vector */
    	return checksums;
}

 

Træning: GPU-baseret parallel SHA512!

__device__ static const uint64_t K[80] = {
   UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
   UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
   UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
   UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
   UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
   UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
   UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
   UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
   UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
   UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
   UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
   UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
   UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
   UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
   UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
   UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
   UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
   UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
   UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
   UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
   UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
   UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
   UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
   UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
   UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
   UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
   UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
   UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
   UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
   UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
   UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
   UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
   UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
   UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
   UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
   UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
   UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
   UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
   UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
   UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
};

    /* Various logical functions for calculating sha-512 hash on GPU */

#define ROR64c(x, y) \
    ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
      ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))

#define STORE64H(x, y)                                                                     \
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }

#define LOAD64H(x, y)                                                      \
   { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
         (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
         (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
         (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }


#define Ch(x,y,z)       (z ^ (x & (y ^ z)))
#define Maj(x,y,z)      (((x | y) & z) | (x & y))
#define S(x, n)         ROR64c(x, n)
#define R(x, n)         (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
#define Sigma0(x)       (S(x, 28) ^ S(x, 34) ^ S(x, 39))
#define Sigma1(x)       (S(x, 14) ^ S(x, 18) ^ S(x, 41))
#define Gamma0(x)       (S(x, 1) ^ S(x, 8) ^ R(x, 7))
#define Gamma1(x)       (S(x, 19) ^ S(x, 61) ^ R(x, 6))
#ifndef MIN
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
#endif

    /*
    * FUNCTION: static int __device__ __host__ sha512_compress
    *
    * ARGS:
    * sha512_context* md - Pointer to the SHA-512 context structure.
    * unsigned char* buf - Pointer to the buffer containing the data to be compressed.
    *
    * DESCRIPTION:
    * This function performs the compression step of the SHA-512 algorithm on a block of data.
    * It performs the following steps:
    * - Copies the current state values from the SHA-512 context (md) into local variables (S).
    * - Copies the input data block (buf) into an array of 80 64-bit unsigned integers (W).
    * - Fills the remaining elements of W[16..79] using bitwise operations and additions as per the SHA-512 algorithm.
    * - Performs a series of 80 rounds of SHA-512 operations (RND macro) on the state variables (S) and elements of W.
    * - Updates the state variables (md->state) by adding the values from the local variables (S).
    * This function is marked as static, which means it can only be accessed within the same source file. It can be called from both device (GPU) and host (CPU) code, as denoted by the __device__ and __host__ qualifiers.
    *
    * RETURN VALUE: int
    * Returns 0 on success, and a non-zero value if any error occurs (currently not used in the function).
    */
    static int __device__ __host__ sha512_compress(sha512_context* md, unsigned char* buf)
    {
        uint64_t S[8], W[80], t0, t1;
        int i;

        /* copy state into S */
        for (i = 0; i < 8; i++)
            S[i] = md->state[i];
        /* copy the state into 1024-bits into W[0..15] */
        for (i = 0; i < 16; i++)
            LOAD64H(W[i], buf + (8 * i));
        /* fill W[16..79] */
        for (i = 16; i < 80; i++)
            W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];

        /* Compress */
#define RND(a,b,c,d,e,f,g,h,i) \
    t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
    t1 = Sigma0(a) + Maj(a, b, c);\
    d += t0; \
    h  = t0 + t1;

        for (i = 0; i < 80; i += 8) {
            RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i + 0);
            RND(S[7], S[0], S[1], S[2], S[3], S[4], S[5], S[6], i + 1);
            RND(S[6], S[7], S[0], S[1], S[2], S[3], S[4], S[5], i + 2);
            RND(S[5], S[6], S[7], S[0], S[1], S[2], S[3], S[4], i + 3);
            RND(S[4], S[5], S[6], S[7], S[0], S[1], S[2], S[3], i + 4);
            RND(S[3], S[4], S[5], S[6], S[7], S[0], S[1], S[2], i + 5);
            RND(S[2], S[3], S[4], S[5], S[6], S[7], S[0], S[1], i + 6);
            RND(S[1], S[2], S[3], S[4], S[5], S[6], S[7], S[0], i + 7);
        }
#undef RND
        for (i = 0; i < 8; i++)
            md->state[i] = md->state[i] + S[i];

        return 0;
    }

    /*
    * FUNCTION: int __device__ __host__ sha512_init
    *
    * ARGS:
    * sha512_context* md - Pointer to the SHA-512 context structure.
    *
    * DESCRIPTION:
    * This function initializes the SHA-512 context by setting the initial state values for the SHA-512 hash calculation.
    * It performs the following steps:
    * - Checks for a NULL pointer for the input SHA-512 context, which is an error condition.
    * - Sets the buffer length (curlen) and original message length (length) in the context to 0.
    * - Sets the initial state values (8 64-bit unsigned integers) in the context as per the SHA-512 algorithm specifications.
    * This function can be called from both device (GPU) and host (CPU) code, as denoted by the __device__ and __host__ qualifiers.
    *
    * RETURN VALUE: int
    * Returns 0 on success, and a non-zero value if any error occurs (e.g., NULL pointer for the input context).
    */
    int __device__ __host__ sha512_init(sha512_context* md)
    {
        if (md == NULL) return 1;
        md->curlen = 0;
        md->length = 0;
        md->state[0] = UINT64_C(0x6a09e667f3bcc908);
        md->state[1] = UINT64_C(0xbb67ae8584caa73b);
        md->state[2] = UINT64_C(0x3c6ef372fe94f82b);
        md->state[3] = UINT64_C(0xa54ff53a5f1d36f1);
        md->state[4] = UINT64_C(0x510e527fade682d1);
        md->state[5] = UINT64_C(0x9b05688c2b3e6c1f);
        md->state[6] = UINT64_C(0x1f83d9abfb41bd6b);
        md->state[7] = UINT64_C(0x5be0cd19137e2179);

        return 0;
    }

    /*
    * FUNCTION: int __device__ __host__ sha512_update
    *
    * ARGS:
    * sha512_context* md - Pointer to the SHA-512 context structure.
    * const uint8_t* in - Pointer to the input message buffer.
    * size_t inlen - Length of the input message buffer.
    *
    * DESCRIPTION:
    * This function updates the SHA-512 hash calculation with additional input data. It processes the input data in blocks of 128 bytes and updates the SHA-512 context accordingly.
    * It performs the following steps:
    * - Checks for NULL pointers for the input SHA-512 context and input message buffer.
    * - Checks if the current length of the message buffer in the context is greater than the size of the buffer, which is an error condition.
    * - Processes the input data in blocks of 128 bytes:
    * - If the current length of the message buffer in the context is 0 and the input data length is greater than or equal to 128 bytes, it directly compresses the input data using sha512_compress() function, updates the length of the original message, and advances the input data buffer and length.
    * - Otherwise, it copies the input data to the message buffer in the context until the buffer is full (128 bytes):
    * - If the buffer is full, it compresses the buffer using sha512_compress() function, updates the length of the original message, and resets the buffer length.
    * - Continues this process until all the input data is processed.
    * This function can be called from both device (GPU) and host (CPU) code, as denoted by the __device__ and __host__ qualifiers.
    *
    * RETURN VALUE: int
    * Returns 0 on success, and a non-zero value if any error occurs.
    */
    int __device__ __host__ sha512_update(sha512_context* md, const uint8_t* in, size_t inlen)
    {
        size_t n;
        int  err;

        /* Check if input parameters are valid */
        if (md == NULL) return 1;
        if (in == NULL) return 1;
        if (md->curlen > sizeof(md->buf)) return 1;

        /* Process input data in blocks of HASH_SIZE bytes */
        while (inlen > 0)
        {
            /* If there is enough input data and buffer is empty, directly compress the input data */
            if (md->curlen == 0 && inlen >= HASH_SIZE)
            {
                if ((err = sha512_compress(md, (unsigned char*)in)) != 0) return err;

                md->length += HASH_SIZE * 8;
                in += HASH_SIZE;
                inlen -= HASH_SIZE;
            }
            else
            {
                /* Copy input data to buffer until it is full or input data is exhausted */
                n = MIN(inlen, (HASH_SIZE - md->curlen));
                for (size_t i = 0; i < n; ++i)
                    md->buf[i + md->curlen] = in[i];

                md->curlen += n;
                in += n;
                inlen -= n;

                /* If buffer is full, compress it */
                if (md->curlen == HASH_SIZE) {
                    if ((err = sha512_compress(md, md->buf)) != 0) return err;

                    md->length += 8 * HASH_SIZE;
                    md->curlen = 0;
                }
            }
        }
        return 0;
    }

    /*
    * FUNCTION: int __device__ __host__ sha512_final
    *
    * ARGS:
    * sha512_context* md - Pointer to the SHA-512 context structure.
    * uint8_t* out - Pointer to the output buffer for storing the final SHA-512 hash.
    *
    * DESCRIPTION:
    * This function finalizes the SHA-512 hash calculation by padding the input message and storing the calculated hash in the output buffer.
    * It performs the following steps:
    * - Checks for NULL pointers for the input SHA-512 context and output buffer.
    * - Appends the `1` bit to the message buffer.
    * - If the length of the message buffer is greater than 112 bytes, it appends zeros and compresses the buffer.
    * - Appends zeros to the message buffer until it reaches a length of 120 bytes.
    * - Stores the length of the original message in big-endian format in the last 8 bytes of the buffer.
    * - Performs the final compression using sha512_compress() function.
    * - Copies the resulting hash from the SHA-512 context to the output buffer.
    *  This function can be called from both device (GPU) and host (CPU) code, as denoted by the __device__ and __host__ qualifiers.
    *
    * RETURN VALUE: int
    * Returns 0 on success, and a non-zero value if any error occurs.
    */
    int __device__ __host__ sha512_final(sha512_context* md, uint8_t* out)
    {
        /* Check if input parameters are valid */
        if (md == NULL) return 1;
        if (out == NULL) return 1;
        if (md->curlen >= sizeof(md->buf)) return 1;

        /* increase the length of the message */
        md->length += md->curlen * UINT64_C(8);
        /* append the '1' bit */
        md->buf[md->curlen++] = (unsigned char)0x80;

        /* if the length is currently above 112 bytes append zeros then compress. Then can fall back to padding zeros and length encoding like normal */
        if (md->curlen > 112) {
            while (md->curlen < HASH_SIZE)
                md->buf[md->curlen++] = (unsigned char)0;

            sha512_compress(md, md->buf);
            md->curlen = 0;
        }

        while (md->curlen < 120)
            md->buf[md->curlen++] = (unsigned char)0;

        /* store length */
        STORE64H(md->length, md->buf + 120);
        sha512_compress(md, md->buf);
        /* copy output */
        for (int i = 0; i < 8; i++)
            STORE64H(md->state[i], out + (8 * i));

        return 0;
    }

    /*
    * FUNCTION: int __device__ __host__ sha512
    *
    * ARGS:
    * const uint8_t* message - Pointer to the input message whose SHA-512 hash needs to be calculated.
    * size_t length - Length of the input message.
    * uint8_t* out - Pointer to the output buffer for storing the calculated SHA-512 hash.
    *
    * DESCRIPTION:
    * This function calculates the SHA-512 hash for the input message using the sha512_context structure and associated functions.
    * It initializes the sha512_context using sha512_init() function, updates the context with the input message using sha512_update() function, and finalizes the context to obtain the SHA-512 hash using sha512_final() function.
    * The calculated hash is stored in the output buffer pointed to by `out`.
    * This function can be called from both device (GPU) and host (CPU) code, as denoted by the __device__ and __host__ qualifiers.
    *
    * RETURN VALUE: int
    * Returns the status of the SHA-512 calculation, where 0 indicates success, and any other value indicates an error.
    */
    int __device__ __host__ sha512(const uint8_t* message, size_t length, uint8_t* out)
    {
        sha512_context ctx;
        int status;
        if ((status = sha512_init(&ctx))) return status;
        if ((status = sha512_update(&ctx, message, length))) return status;
        if ((status = sha512_final(&ctx, out))) return status;
        return status;
    }

    /*
    * FUNCTION: std::string __host__ sha512
    *
    * ARGS:
    * const uint8_t* message - Pointer to the input message whose SHA-512 hash needs to be calculated.
    * size_t length - Length of the input data.
    *
    * DESCRIPTION:
    * This function calculates the SHA-512 hash of the input data using a GPU-based implementation.
    * It performs the following steps:
    * - Initializes a SHA-512 context structure (ctx) from the sha512GPU namespace.
    * - Updates the context with the input data using sha512GPU::sha512_update() function.
    * - Finalizes the hash calculation and stores the resulting digest in a local buffer (digest) using sha512GPU::sha512_final() function.
    * - Converts the digest from binary to hexadecimal representation and stores it in a string buffer (buf) using sprintf() function.
    * - Returns the calculated SHA-512 hash as a string.
    * This function is marked with __host__ qualifier, which means it can be called from host (CPU) code, but not from device (GPU) code.
    *
    * RETURN VALUE: std::vector< uint8_t >
    * Returns the calculated std::vector< uint8_t > as a hexadecimal bytes.
    */
    std::vector< uint8_t > __host__ sha512(const uint8_t* message, size_t length)
    {
        std::vector< uint8_t > digest(DIGEST_SIZE);
        hashes::sha512_context ctx;
        int status;
        if ((status = hashes::sha512_init(&ctx))) return digest;
        if ((status = hashes::sha512_update(&ctx, message, length))) return digest;
        if ((status = hashes::sha512_final(&ctx, digest.data()))) return digest;
        return digest;
    }

    /*
    * FUNCTION: void __global__ sha512Kernel
    *
    * ARGS:
    * char* inputs - Pointer to the input buffers in GPU memory.
    * int numInputs - Number of input buffers to process.
    * uint8_t* outputs - Pointer to the output buffer in GPU memory for storing the calculated SHA-512 hashes.
    * size_t bufferSize - Size of each input buffer.
    * int bufferLength - Length of each input buffer.
    * This function is meant to be called from host code and executed on the GPU using CUDA.
    *
    * DESCRIPTION:
    * This CUDA kernel function is launched on the GPU to calculate the SHA-512 hashes for the input buffers in parallel.
    * It calculates the global thread ID using blockIdx.x and threadIdx.x, and checks if the thread ID is within bounds of the number of input buffers.
    * If the thread ID is within bounds, it calls the sha512() function to calculate the SHA-512 hash for the corresponding input buffer, and stores the result in the output buffer in GPU memory.
    */
    void __global__ sha512Kernel(char* inputs, int numInputs, uint8_t* outputs, int bufferLength)
    {
        /* Calculate global thread ID */
        int index = blockIdx.x * blockDim.x + threadIdx.x;
        /* Check if thread ID is within bounds and call SHA-512 function */
        if (index < numInputs)
            sha512((uint8_t*)(inputs + index * bufferLength), bufferLength, outputs + index * DIGEST_SIZE);
    }

    /*
    * TEST FUNCTION: std::vector< std::vector< uint8_t >> sha512BuffersGPU
    *
    * ARGS:
    * const std::vector< std::vector< uint8_t >>& buffers - A vector of input buffers to calculate SHA-512 hashes. 
    *
    * DESCRIPTION:
    * This function calculates the SHA-512 hash for a vector of input buffers on the GPU using CUDA parallel processing.
    * It allocates GPU memory for input and output buffers, copies input buffers from host to GPU memory, and launches a CUDA kernel function to perform the hash calculation.
    * The results are then copied back from GPU to host memory using CUDA streams for faster copying.
    * Finally, the function converts the hash results from binary to hexadecimal string format and returns them as a vector of strings.
    *
    * RETURN VALUE: std::vector< std::vector< uint8_t >> 
    * A vector of SHA-512 hashes for the input buffers.
    */
    std::vector< std::vector< uint8_t >> testSHA512GPU(const std::vector< std::vector< uint8_t >>& buffers)
    {
        int numInputs = buffers.size();
        /* Size of each input buffer (assuming all strings have the same size) */
        size_t bufferSize = buffers[0].size();
        int bufferLength = static_cast< int >(bufferSize);

        /*  Create and copy input buffers to GPU memory */
        char* d_inputs;
        cudaMalloc((void**)&d_inputs, numInputs * bufferLength);
        for (int i = 0; i < numInputs; ++i)
            cudaMemcpy(d_inputs + i * bufferLength, buffers[i].data(), bufferLength, cudaMemcpyHostToDevice);

        unsigned char* d_outputs;
        /* 128 - size of SHA-512 hash in bytes */
        cudaMalloc((void**)&d_outputs, numInputs * hashes::DIGEST_SIZE);

        /* Calculate grid size and block size for CUDA threads */
        const int blockSize = 256;
        const int gridSize = (numInputs + blockSize - 1) / blockSize;

        /* Call the sha512Kernel CUDA kernel function on GPU to calculate hashes for each input buffer and save results into output buffer */
        hashes::sha512Kernel << < gridSize, blockSize >> > (d_inputs, numInputs, d_outputs, bufferLength);

        /* Allocate memory on host for results */
        std::vector< std::vector< uint8_t >> results(numInputs);
        /* Allocate memory on host for output buffer */
        std::vector< unsigned char > h_outputs(numInputs * hashes::DIGEST_SIZE);

        /* Create CUDA stream for faster copying */
        cudaStream_t stream;
        cudaStreamCreate(&stream);
        /* Copy results using CUDA stream */
        cudaMemcpyAsync(h_outputs.data(), d_outputs, numInputs * hashes::DIGEST_SIZE, cudaMemcpyDeviceToHost, stream);
        /* Synchronize CUDA stream to complete copying */
        cudaStreamSynchronize(stream);

        /* Copy results to vector of vectors */
        for (int i = 0; i < numInputs; ++i) {
            results[i].resize(hashes::DIGEST_SIZE);
            memcpy(results[i].data(), h_outputs.data() + i * hashes::DIGEST_SIZE, hashes::DIGEST_SIZE);
        }
        /* Free GPU memory */
        cudaFree(d_inputs);
        cudaFree(d_outputs);
        /* Destroy CUDA stream */
        cudaStreamDestroy(stream);
        return results;
    }

 

Konklusion

Du kan finde koden til hele projektet på vores github

Vi sætter pris på din støtte og ser frem til din fortsatte deltagelse i vores fællesskab.

Eventuelle spørgsmål fra artiklens forfattere kan sendes til e-mail: articles@stofu.io

Tak for din opmærksomhed og hav en god dag!